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Abstract

Numerical methods are used to investigate the transient heat transfer from an elliptic cylinder to a steady stream of viscous, incom-
pressible fluid. The temperature of the cylinder is considered spatially uniform but not constant in time. The momentum and heat balance
equations were solved numerically in elliptic coordinate system. The solutions span the parameter ranges 5 6 Re 6 40, 1 6 Pr 6 100 and
axis ratio e, 0.1 6 e 6 0.75. The computations were focused on the influence of the axis ratio and volume heat capacity ratio on the heat
transfer rate.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In many industrial applications, where heat loads are
substantial and space is limited, the elliptical geometry out-
performs the circular geometry. Elliptical cylinders offer
less flow resistance and higher heat transfer rates than cir-
cular cylinders. In spite of this fact, the heat transfer from
an elliptical cylinder is the subject of relatively few theoret-
ical/numerical studies.

The laminar mixed (natural and forced) convective heat
transfer from a straight isothermal tube of elliptic cross-sec-
tion placed in a uniform stream was investigated numeri-
cally in [1]. The free stream direction is horizontal and
normal to the tube axis and the flow field is two-dimen-
sional. The effects of the Reynolds number, 20 6 Re 6 500,
Grashof number, 0 6 Gr 6 1.25 � 106, Prandtl number, Pr,
axis ratio and the angle of inclination (varying from 0� to
180�) on the heat transfer process were studied. In [2] the
two-dimensional steady-state problem of laminar forced
convective heat transfer from an isothermal cylinder, elliptic
in cross section, inclined to a uniform stream is investigated.
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Numerical solutions of the Navier–Stokes and energy equa-
tions have been obtained for Reynolds numbers, Re, 5 and
20, Prandtl number, Pr, and inclination angle h in the
ranges, 1 6 Pr 6 25 and 0 6 h 6 p/2. For large Pe values,
the average rate of heat transfer, Nu, was found to behave
closely to the theoretical result Nu � Pe1/3, where Pe =
RePr is the Peclet number. D’Alessio discussed in [3] the
two-dimensional problem of forced convection past an
inclined elliptic cylinder. Both the steady state and unsteady
state cases have been considered for moderate Reynolds
numbers, 40 6 Re 6 70 and Prandtl number Pr = 1. Badr
[4] analysed numerically the laminar forced convection from
a straight isothermal tube of elliptic cross-section placed in a
uniform stream. For Reynolds number in the range 20–500,
it is shown that: (a) the heat transfer reaches its maximum
value when the angle of inclination is null while the mini-
mum occurs when the angle of inclination is equal to p/2;
(b) when the angle of inclination is equal to zero, smaller
axis ratio gives higher heat transfer rates. Forced and mixed
convective heat transfer from accelerated flow past an ellip-
tic cylinder was investigated in [5]. The fluid is considered
viscous and incompressible and the flow laminar and two-
dimensional. The elliptic cylinder is inclined at an angle h
with the horizontal and starting from rest, accelerates uni-
formly through the fluid. The temperature of the cylinder
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Nomenclature

a semi-major axis of elliptical cylinder
b semi-minor axis of elliptical cylinder
c focal distance
cP heat capacity
e dimensionless focal distance or eccentricity, c/a
Pr Prandtl number, Pr = l/a
Re Reynolds number, Re = 2U1a/l
t time
T temperature
U1 free stream velocity
X streamwise (horizontal) Cartesian coordinate
Y transverse (vertical) Cartesian coordinate
Z dimensionless temperature defined by the rela-

tions, ZðcÞ ¼
T fðcÞ�T f ;1
T c;0�T f ;1

Greek symbols

a thermal diffusivity of the fluid phase
e axis ratio, b/a

l kinematic viscosity
q density
s dimensionless time or Fourier number, s = ta/a2

x dimensionless vorticity
w dimensionless stream function
N volume heat capacity ratio, (qc cP,c)/(qfcP,f)

Subscripts

c refers to cylinder
f refers to the fluid
0 initial conditions
1 large distance from the cylinder
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surface is constant. Khan et al. [6] used the Von Karman–
Pohlhausen integral method to solve the boundary layer
momentum and energy equations. Isothermal and isoflux
thermal boundary conditions were considered on the sur-
face of the cylinder. Three general correlations, one for drag
and two for heat transfer, have been determined. The drag
and the average heat transfer coefficients depend on the
Reynolds number as well as on the axis ratio. It must be also
mentioned that in [5] the experimental studies dedicated to
fluid flow around and heat transfer from elliptical cylinders
are reviewed.

In the articles mentioned previously the temperature of
the cylinder is considered constant. A constant tempera-
ture inside the cylinder indicates the presence of a heat
source in the system. When there is no heat source in
the system, the heat transfer problem should be rewritten
and solved as an unsteady conjugate heat transfer prob-
lem. The internal and external problems are the asymp-
totic formulations of the conjugate problem. The
usefulness and at the same time the necessity of a study
dedicated to the internal and external problems can be
twofold argued. First, there are enough real life situations
well described by these models. Secondly, when solving the
conjugate problem, the asymptotic solutions play an
important role.

The aim of this paper is to extend the previous studies to
the case of elliptic cylinders with spatially uniform, but
changing with time, temperature (i.e. to solve the external
problem). The influence of the volume heat capacity ratio
and axis ratio on the heat transfer rate is investigated for
Re = 5, 10.0, 25.0, 40.0 (Re is the cylinder Reynolds num-
ber based on the major axis) and three values of the Prandtl
number, Pr = 1, 10 and 100. From our knowledge, this
problem was not investigated until now.
2. Model equations

Consider uniform flow of a Newtonian fluid past a fixed
elliptic cylinder with major axis 2a and minor axis 2b. The
cylinder is oriented so that the major axis is parallel to the
free stream flow direction. The flow is assumed to be lam-
inar, steady and two-dimensional. The free stream velocity
and temperature are denoted by U1 and Tf,1, respectively.
The following statements are considered valid:

– the effects of buoyancy and viscous dissipation are
negligible;

– the physical properties of the material of the cylinder
and the fluid are considered to be uniform, isotropic
and constant;

– no emission or absorption of radiant energy;
– no phase change.

The condition of spatially uniform temperature inside
the cylinder is fulfilled if the relaxation time inside the cyl-
inder is considerably smaller than the relaxation time in the
fluid. The transfer is hundreds of times (at least) faster
inside the cylinder than in the fluid. In terms of physical
quantities, this condition means values considerably
greater than one for the conductivity ratio (the conductiv-
ity ratio is defined as (cylinder’s thermal conductivity)/
(fluid thermal conductivity)).

The Cartesian coordinate system is not convenient for
either analytical or numerical purposes. The conformal
transformation

X þ iY ¼ coshðnþ igÞ

generates a coordinate system (elliptic cylindrical coordi-
nates, [7]) that is better suited to the geometry of the prob-
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lem. The relation between the elliptic coordinates (n,g) and
the Cartesian coordinates (X, Y) is:

X ¼ c cosh n cos g; Y ¼ c sinh n sin g

where c is the focal distance

c ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

; e ¼ b
a
:

The surface of the ellipse is defined by n = n0, so that tanh
n0 = e. This transformation maps the upper half of the XY–
plane (which by symmetry is all that need to be considered)
into the semi-infinite strip n P n0, 0 6 g 6 p.

Nondimensionalizing the basic conservation balances
for momentum and thermal energy using the free stream
fluid properties and the semi-major axis, we obtain the gov-
erning differential equations:

– fluid motion
o
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on2
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¼ �Jx ð1aÞ
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Table 1
Drag coefficient values for e = 0.2
– energy

Re n1 Grid N1 �M2 CD

(3b) (6)

5 3.344 65 � 65 2.9668 2.6421
129 � 129 2.9659 2.6427
257 � 257 2.9657 2.6429

4.1297 65 � 81 2.7857 2.6460
129 � 161 2.7849 2.6473
257 � 321 2.7846 2.6476

4.915 65 � 97 2.7102 2.6491
129 � 193 2.7092 2.6508
257 � 385 2.7090 2.6512

50 3.344 65 � 65 0.7082 0.6787
129 � 129 0.7083 0.6793
257 � 257 0.7085 0.6796

4.1297 65 � 81 0.6923 0.6809
129 � 161 0.6924 0.6816
257 � 321 0.6925 0.6819

4.915 65 � 97 0.6866 0.6816
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where J = e2(sinh2n + sin2g) and e is the dimensionless
focal distance (or ellipse eccentricity).
The boundary conditions to be satisfied are;

– interface (n = n0)

w ¼ 0; Zc ¼ Z ð3aÞ
– free stream (n =1)

w! e sinh n cos g; x! 0; Z ! 0:0 ð3bÞ
– symmetry axis (g = 0,p)
129 � 193 0.6866 0.6823
257 � 385 0.6868 0.6826

1 – number of grid points in g-direction; 2 – number of grid points in
n-direction.

Table 2
Comparison of the present CD values with published results for e = 0.2

Re CD

Present results Sivakumar et al. [12]a

25 1.0060 1.0143
200 0.3262 0.3281

a Transformed to the present characteristic length.
w ¼ x ¼ 0;
oZ
og
¼ 0:0 ð3cÞ

The dimensionless initial conditions are:

s ¼ 0:0; Zc ¼ 1:0; Zðn > n0Þ ¼ 0:0 ð4Þ
The physical quantities of interest are the cylinder tem-

perature Zc, the instantaneous local Nusselt number, Nug,
and the instantaneous average Nusselt number, Nuext.
Considering as driving force the difference between the
instantaneous cylinder temperature and the free stream
temperature, the instantaneous local and average Nu num-
bers are given by
Nug ¼ �
2

Zce
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2n0 þ sin2 g

q oZ
on

����
n¼n0

ð5aÞ

Nuext ¼ �
1

EðeÞZc

Z p

0

oZ
on

����
n¼n0

dg ð5bÞ

where E(e) is the complete elliptic integral of the second
kind. The characteristic length used to define the Nu num-
bers is the major axis of the ellipse, 2a.

3. Method of solution

The energy balance equations and the Navier–Stokes
equations were solved numerically. The finite difference
method was used for discretization.

The Navier–Stokes equations being uncoupled from the
energy balance equations can be solved independently of
them. The algorithm employed is the nested defect-correc-
tion iteration, [8,9]. Eq. (1a) was discretized with the cen-
tral second order accurate finite difference scheme. A
double discretization (upwind and central finite difference
schemes), necessary for the defect correction iteration,
was used for Eq. (1b). Numerical experiments were made
with the discretization steps Dn = Dg = p/64, p/128, p/256.



Table 3
Asymptotic Nuext values for Re = 10

e Pr N Zc = 1.0

0.01 0.1 0.2 0.5 1.0 2.0 5.0 10.0 100.0

Plate 1 0.016a 0.15a 0.29a 0.65 1.09 1.606 2.12 2.35 2.60 2.66
10 0.11 0.97 1.694 3.05 4.01 4.70 5.22 5.40 5.583 5.62

100 0.546 4.077 6.305 8.974 10.33 11.21 11.76 11.897 12.03 12.04

0.20 1 0.005a 0.05a 0.098a 0.238a 0.45a 0.809a 1.469 1.934 2.56 2.65
10 0.039 0.368 0.704 1.536 2.48 3.51 4.575 5.05 5.548 5.61

100 0.204 1.82 3.26 5.969 8.175 9.79 11.03 11.49 11.98 11.99

0.40 1 0.008a 0.077a 0.15a 0.355a 0.65a 1.10 1.74 2.09 2.483 2.53
10 0.06a 0.56 1.04 2.10 3.09 3.97 4.715 5.01 5.298 5.33

100 0.33 2.72 4.50 7.22 9.09 10.12 10.83 11.08 11.31 11.33

0.750 1 0.009a 0.084a 0.16a 0.387a 0.705a 1.149 1.695 1.952 2.22 2.25
10 0.059a 0.55a 1.026a 2.07 2.978 3.71 4.266 4.47 4.67 4.69

100 0.30a 2.597 4.31 6.75 8.12 8.94 9.48 9.67 9.85 9.86

1 1 0.0085a 0.075a 0.148a 0.35a 0.65a 1.065 1.567 1.795 2.029 2.06
10 0.044a 0.419a 0.803a 1.723 2.61 3.329 3.861 4.06 4.237 4.26

100 0.164a 1.56a 2.90a 5.457 7.014 7.913 8.488 8.68 8.855 8.87

a Unfrozen asymptotic value.
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Fig. 1. Asymptotic values of the Nu numbers function of eN for Re = 10; (a) Pr = 1; (b) Pr = 10.0; (c) Pr = 100.0.
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The main problem in solving numerically the present
Navier–Stokes equations is the boundary conditions at
infinity. A reference study in this field may be considered
[10]. According to [10], at n1, the boundary conditions

oŵ
on
¼ ox

on
¼ 0:0 ð6Þ

provide accurate results at moderate Re values. In (6),
ŵ ¼ w� e sinh n sin g is the deviation from the uniform
flow. In this work, both relations (3b) and (6) were used
as boundary conditions at infinity.

The mathematical model equations (2a) and (2b) is a
system formed by a 2D parabolic partial differential equa-
tion (PDE) that describes the heat transfer in the fluid
phase and an ordinary differential equation (ODE) that
describes the energy balance of the cylinder. Eq. (2a) was
discretized with the exponentially fitted scheme, [11]. The
discretization steps in both spatial directions are equal
and took the values p/64, p/128 and p/256. Let us consider
that the numerical values of the dimensionless temperature
at time s are known. The values at the time s + Ds were cal-
culated as follows: (i) the values on the cylinder’s surface
10-3 10 -2 10 -1 100 101 102 103
0

1

2

3

4

5

10-3 10 -2 10 -1 100 101 102 103
0

1

2

3

4

5

10-3 10 -2 10 -1 100 101 102 103
0

1

2

3

4

5

10-3 10 -2 10 -1 100 101 102 103
0

1

2

3

4

5

10-3 10 -2 10 100 101 102 103
0

1

2

3

4

5

Pr = 1

N
u ex

t

ε Ξ

finite plate
ε  = 0.1

    = 0.3

     = 0.5

     = 0.75

 circular cylinder

a b

10-3 10-2 10-1 10
0

4

8

12

16

20

24

10-3 10-2 10-1 10
0

4

8

12

16

20

24

10-3 10-2 10-1 10
0

4

8

12

16

20

24

10-3 10-2 10-1 10
0

4

8

12

16

20

24

10-3 10-2 10-1 10
0

4

8

12

16

20

24

N
u ex

t

ε Ξ

Pr = 100

c

Fig. 2. Asymptotic values of the Nu numbers function of eN
were calculated by integrating (2b) from s to s + Ds with
an explicit modified Euler algorithm; the integral from rela-
tions (2b) was calculated by the Simpson 3/8 rule using the
local heat flux values available at time s; (ii) the values of
the dimensionless temperature in the fluid phase were cal-
culated by the implicit ADI method using the cylinder’s
surface values computed in the previous step as boundary
conditions (relation (3a)).

The time step was variable and changed from the start of
the computation to the final stage. The values of the time
step depend on the parameter values.
4. Results

The heat transfer is characterized by the following
dimensionless parameters: Re, Pr, e and N. The numerical
simulations carried out in this work focused on axis ratio
range 0.1–0.75. Four values of the Re number were
selected: Re = 5.0, 10.0, 25.0 and 40.0. We considered
Re = 40.0 as superior limit because we used the circular
cylinder as boundary case. For the circular cylinder, it is
well known that for Re > Recrt ffi 46 the flow becomes
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for Re = 40; (a) Pr = 1; (b) Pr = 10.0; (c) Pr = 100.0.
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unsteady. For each value of Re, Pr takes the following
three values, Pr = 1.0, Pr = 10.0 and Pr = 100.0. Values
of v in the range 10�2–102 cover the situations of practical
interest and allow the study of asymptotic behaviour.

The influence of the far field boundary conditions and
grid step size on the drag coefficient CD is shown in Table
1. Table 2 shows the comparison of the present results for
the drag coefficient with the results published in [12]. In
Tables 1 and 2 numerical experiments performed at Re val-
ues greater than those mentioned previously are presented.

For the elliptic cylinder the comparison of the drag coef-
ficient values with previous published results it is not an ele-
mentary task because different authors used different
characteristic lengths (for example, D’Alessio [3] and Badr
[4] used the focal distance, D’Alessio and Dennis [2] the
major axis, Sivakumar et al. [12] the minor axis and so on).
We selected Sivakumar et al. [12] for the following reasons:
(a) it is the most recent article; (b) the transformation from
the characteristic length used in [12] to the present character-
istic length is elementary; (c) the agreement between their
results and other numerical solutions, [13–15], is very good.

Table 1 shows that the present numerical results
obtained on a mesh with 257 � 385 points and the bound-
ary condition (6) can be considered grid independent.
Table 2 shows that the present numerical results are in
-40
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Fig. 3. Asymptotic values of the local Nu number for Re =
good agreement with the results presented in [12]. The
results presented in Tables 1 and 2 can be considered an
argument for the accuracy of the present hydrodynamic
computations.

Unfortunately, there are no data in literature to verify
the accuracy of the present heat transfer computations.
Based on the experience of the sphere, cylinder and finite
plate problems, one may expect that, when v tends to
infinity, the asymptotic Nu values will tend to the Nu values
corresponding to the elliptic cylinder with constant temper-
ature. This aspect will be discussed in the next paragraphs of
this section.

From the numerical experiments made we selected for
presentation the asymptotic values of Nuext calculated for
Re = 10 and 40 and the asymptotic values of Nug calcu-
lated for Re = 20, Pr = 10 and eN = 0.1, 1 and 10. This
selection captures the salient features encountered during
the numerical simulations. The asymptotic values of Nuext

computed for Re = 10 are presented in Table 3 and plotted
in Fig. 1. Fig. 2 shows the asymptotic Nuext values for
Re = 40. The asymptotic values of the local Nu number
for Re = 20 and Pr = 10 are presented in Fig. 3. In order
to avoid a strong compression of the curves, in Fig. 3a
and b the maximum value of the ordinate is smaller
than the maximum values of the local Nu number for the
b
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plate. In Fig. 3 the front stagnation point (leading edge) is
g = p while the rear stagnation point (trailing edge) is
g = 0. The presence of the superscript * in a cell indicates
that the time variation of the Nu number does not
reach a frozen asymptotic value. The values depicted in this
case correspond to the integration final, when the time var-
iation of Nuext becomes small. The last column of Table 3
shows the values provided by the elliptic cylinder with
constant temperature. The lines corresponding to plate
depict the asymptotic Nu values calculated for the finite
plate. The lines corresponding to e = 1 show the
asymptotic Nu values provided by the circular cylinder.
In Figs. 1 and 2 the results obtained for N = 1000 were
taken into consideration. In all cases, the relative difference
between Nuext (N = 1000) and Nuext (Zc = 1) was smaller
than 1%.

In this work, the finite plate has length L and thickness
h. Only one side of the plate, of length L, is wetted. The
unwetted sides of the plate are insulated. In the mathemat-
ical model of the external problem of the finite plate [16],
the volume heat capacity ratio and the aspect ratio h/L
appear only as the product (h/L)N and may be considered
101
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Fig. 4. Variation of the heat transfer group Nuext/Pr1/3 with R
a single parameter. Note that for the finite flat plate the
aspect ratio does not influence the external flow. For
the elliptic cylinder, the axis ratio appears explicitly in
the mathematical model only in Eq. (2b), as the product
eN, but the velocity profiles depend on e. Thus, for a fair
comparison between the flat plate, elliptic cylinder and cir-
cular cylinder, the following conventions were adopted: (a)
the data presented in Table 3 and Figs. 1 and 2 for the flat
plate were calculated considering L = 2a, h/L equal to 0.2
(Table 3 and Fig. 1) and 0.1 (Fig. 2); (b) in Figs. 1 and 2
the abscissa is e(h/L)N; Fig. 3 shows the asymptotic Nug

values computed for the same e(h/L)N value.
The results presented in Table 3 and Figs. 1–3 lead to

the following observations:

– for given Re and Pr values, the axis ratio and the volume
heat capacity ratio have a distinct influence on the
asymptotic Nu values;

– for given Re, Pr and eN values, the decrease in the axis
ratio increases the asymptotic Nuext values; the finite
plate and the circular cylinder may be considered the
boundary cases for the elliptic cylinder;
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Table 4
Heat transfer parameter values

Re (Asymptotic Nuext)/(Re1/2Pr1/3)

eN = 0.1, Pr = 1 eN = 10, Pr = 100

e = 0.1 e = 0.4 e = 0.1 e = 0.4 e = 0.75

5 0.0465 0.0339 0.850 0.793 0.6895
10 0.0835 0.0586 0.820 0.765 0.663
20 0.132 0.090 0.796 0.739 0.634
30 0.164 0.111 0.783 0.725 0.627
40 0.188 0.125 0.775 0.715 0.629
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– for given Re, Pr and e values, the heat transfer rate is
strongly influenced by N; the increase in N increases
the average Nu number values; when N ?1, Nuext

tends to the solutions provided by the elliptic cylinder
with constant temperature; this behaviour is similar to
that of the finite plate [16], cylinder [17] and sphere
[18,19];

– for large values of eN and small values of the aspect
ratio, the asymptotic values of the elliptic cylinder Nu

number are approximately equal to those of the flat
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Fig. 5. Variation of the heat transfer group Nuext/Pr1/3 with R
plate; for small eN values, the difference between the
elliptic cylinder and finite plate results increases; the
thermal wake phenomenon [16,20] is the explanation
of this situation; the increase in the curvature of the sur-
face of transfer increases thermal wake;

– for given Re(Pr), eN and e values, the increase in Pr(Re)
increases Nuext.

We considered that it is not necessary to present distinct
plots for the dimensionless temperature of the cylinders.
The graphs are similar to those presented for the sphere,
circular cylinder and finite plate. The influence of e and N
on the time variation of dimensionless temperature of the
elliptic cylinder may be related to that observed at average
Nu numbers. The relations (2b) and (5b) express the con-
nection between the dimensionless cylinder temperature
and Nuext.

The heat transfer group (asymptotic Nuext)/Pr1/3 is plot-
ted vs. the Re number in Fig. 4 (e = 0.1), 5 (e = 0.4) and 6
(e = 0.75). We selected these three values for the following
reasons: for e = 0.1 the elliptic cylinder approaches the flat
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Fig. 6. Variation of the heat transfer group Nuext/Pr1/3 with Re number
for e = 0.75 and eN = 10.
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plate; for e = 0.75 the elliptic cylinder approaches the circu-
lar cylinder; the case e = 0.4 may be considered the inter-
mediate case. For e = 0.75 only the results obtained for
eN = 10 may be considered relevant for the present analy-
sis. For e = 0.75 and eN = 0.1 and 1, the time variation
of Nuext does not stabilize. In some cases oscillations occur.
Table 4 presents the values of the heat transfer parameter
(asymptotic Nuext)/(Re1/2Pr1/3) calculated for Pr = 1,
eN = 0.1, e = 0.1, 0.4 and Pr = 100, eN = 10, e = 0.1, 0.4,
0.75.

Figs. 4–6 and Table 4 show that:

– for each of the cases presented in Figs. 4–6 the slope of
the curves is different from 1:2; each curve has a different
slope depending on Pr, eN and e; only for eN = 10 the
influence of Pr may be considered negligible;

– for Pr = 1, e = 0.1, 0.4, eN = 0.1, 1, Pr = 1, e = 0.75,
eN = 10 and Pr = 10, e = 0.4, eN = 0.1, the curves are
not straight lines; they exhibit a small curvature;

– the heat transfer parameter Nuext/(Re1/2Pr1/3) depends
on Re, e and eN; for Pr = 100 and eN = 10, Nuext/
(Re1/2Pr1/3) converges to a value independent on Re.

The previous results show that a general correlation sim-
ilar to that derived in [6] is not possible for the present sit-
uation. Practically, for each set (Pr, e, eN) an independent
relation should be worked out. Also, for some parameter
values, any type of correlations cannot be established due
to the time variation of the Nu number. For these reasons,
we consider that for Re 6 40, the solution to the unsteady
heat transfer from an elliptic cylinder with spatially uni-
form, but changing with time temperature, is the numerical
simulation.
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